Aljabar

Penemu Aljabar adalah Abu Abdullah Muhammad Ibn Musa al-Khwarizmi. Aljabar berasal dari Bahasa Arabal-jabr” yang berarti “pertemuan”, “hubungan” atau “perampungan” adalah cabang matematika yang dapat dicirikan sebagai generalisasi dari bidang aritmatika. Aljabar juga merupakan nama sebuah struktur aljabar abstrak, yaitu http://id.wikipedia.org/w/index.php?title=Aljabar_dalam_sebuah_bidang&action=edit&redlink=1″>aljabar dalam sebuah bidang

Aljabar (Algebra) adalah cabang matematika yang mempelajari struktur, hubungan dan kuantitas. Untuk mempelajari hal-hal ini dalam aljabar digunakan simbol (biasanya berupa huruf) untuk merepresentasikan bilangan secara umum sebagai sarana penyederhanaan dan alat bantu memecahkan masalah. Contohnya, x mewakili bilangan yang diketahui dan y bilangan yang ingin diketahui. Sehingga bila Andi mempunyai x buku dan kemudian Budi mempunyai 3 buku lebih banyak daripada Andi, maka dalam aljabar, buku Budi dapat ditulis sebagai y = x + 3. Dengan menggunakan aljabar, Anda dapat menyelidiki pola aturan aturan bilangan umumnya. Aljabar dapat diasumsikan dengan cara memandang benda dari atas, sehingga kita dapat menemukan pola umumnya.

Aljabar telah digunakan matematikawan sejak beberapa ribu tahun yang lalu. Sejarah mencatat penggunaan aljabar telah dilakukan bangsa Mesopotamia pada 3.500 tahun yang lalu. Nama Aljabar berasal dari kitab yang ditulis pada tahun 830 oleh Matematikawan Persia Muhammad ibn Musa al-Kwarizmi dengan judul ‘Al-Kitab al-Jabr wa-l-Muqabala’ (yang berarti “The Compendious Book on Calculation by Completion and Balancing”), yang menerapkan operasi simbolik untuk mencari solusi secara sistematik terhadap persamaan linier dan kuadratik. Salah satu muridnya, Omar Khayyam menerjemahkan hasil karya Al-Khwarizmi ke bahasa Eropa. Beberapa abad yang lalu, ilmuwan dan matematikawan Inggris, Isaac Newton (1642-17 27) menunjukkan, kelakuan sesuatu di alam dapat dijelaskan dengan aturan atau rumus matematika yang melibatkan aljabar, yang dikenal sebagai Rumus Gravitasi Newton.

Aljabar bersama-sama dengan Geometri, Analisis dan Teori Bilangan adalah cabang-cabang utama dalam Matematika. Aljabar Elementer merupakan bagian dari kurikulun dalam sekolah menengah dan menyediakan landasan bagi ide-ide dasar untuk Ajabar secara keseluruhan, meliputi sifat-sifat penambahan dan perkalian bilangan, konsep variabel, definisi polinom, faktorisasi dan menentukan akar pangkat.

Sekarang ini istilah Aljabar mempunyai makna lebih luas daripada sekedar Aljabar Elementer, yaitu meliputi Ajabar Abstrak, Aljabar Linier dan sebagainya. Seperti dijelaskan di atas dalam aljabar, kita tidak bekerja secara langsung dengan bilangan melainkan bekerja dengan menggunakan simbol, variabel dan elemen-elemen himpunan. Sebagai contoh Penambahan dan Perkalian dipandang sebagai operasi secara umum dan definisi ini menuju pada struktur bilangan seperti Grup, Ring, dan Medan (fields).

Asal Mula Aljabar

Asal mula Aljabar dapat ditelusuri berasal dari bangsa Babilonia Kuno yang mengembangkan sistem aritmatika yang cukup rumit, dengan hal ini mereka mampu menghitung dalam cara yang mirip dengan aljabar sekarang ini. Dengan menggunakan sistem ini, mereka mampu mengaplikasikan rumus dan menghitung solusi untuk nilai yang tak diketahui untuk kelas masalah yang biasanya dipecahkan dengan menggunakan persamaan Linier, Persamaan Kuadrat dan Persamaan Linier tak tentu. Sebaliknya, bangsa Mesir, dan kebanyakan bangsa India, Yunani, serta Cina dalam milenium pertama sebelum masehi, biasanya masih menggunakan metode geometri untuk memecahkan persamaan seperti ini, misalnya seperti yang disebutkan dalam ‘the Rhind Mathematical Papyrus’, ‘Sulba Sutras’, ‘Euclid’s Elements’, dan ‘The Nine Chapters on the Mathematical Art’. Hasil karya bangsa Yunani dalam Geometri, yang tertulis dalam kitab Elemen, menyediakan kerangka berpikir untuk menggeneralisasi formula matematika di luar solusi khusus dari suatu permasalahan tertentu ke dalam sistem yang lebih umum untuk menyatakan dan memecahkan persamaan, yaitu kerangka berpikir logika Deduksi.

Seperti telah disinggung di atas istilah ‘Aljabar’ berasal dari kata arab “al-jabr” yang berasal dari kitab ‘Al-Kitab al-Jabr wa-l-Muqabala’ (yang berarti “The Compendious Book on Calculation by Completion and Balancing”), yang ditulis oleh Matematikawan Persia Muhammad ibn Musa al-Kwarizmi. Kata ‘Al-Jabr’ sendiri sebenarnya berarti penggabungan (reunion). Matematikawan Yunani di jaman Hellenisme, Diophantus, secara tradisional dikenal sebagai ‘Bapak Aljabar’, walaupun sampai sekarang masih diperdebatkan siapa sebenarnya yang berhak atas sebutan tersebut Al-Khwarizmi atau Diophantus?. Mereka yang mendukung Al-Khwarizmi menunjukkan fakta bahwa hasil karyanya pada prinsip reduksi masih digunakan sampai sekarang ini dan ia juga memberikan penjelasan yang rinci mengenai pemecahan persamaan kuadratik. Sedangkan mereka yang mendukung Diophantus menunjukkan Aljabar ditemukan dalam Al-Jabr adalah masih sangat elementer dibandingkan Aljabar yang ditemukan dalam ‘Arithmetica’, karya Diophantus. Matematikawan Persia yang lain, Omar Khayyam, membangun Aljabar Geometri dan menemukan bentuk umum geometri dari persamaan kubik. Matematikawan India Mahavira dan Bhaskara, serta Matematikawan Cina, Zhu Shijie, berhasil memecahkan berbagai macam persamaan kubik, kuartik, kuintik dan polinom tingkat tinggi lainnya.

Peristiwa lain yang penting adalah perkembangan lebih lanjut dari aljabar, terjadi pada pertengahan abad ke-16. Ide tentang determinan yang dikembangkan oleh Matematikawan Jepang Kowa Seki di abad 17, diikuti  oleh Gottfried Leibniz sepuluh tahun kemudian, dengan tujuan untuk memecahkan Sistem Persamaan Linier secara simultan dengan menggunakan Matriks. Gabriel Cramer juga menyumbangkan hasil karyanya tentang Matriks dan Determinan di abad ke-18. Aljabar Abstrak dikembangkan pada abad ke-19, mula-mula berfokus pada teori Galois dan pada masalah keterkonstruksian (constructibility)

Tahap-tahap perkembangan Aljabar simbolik secara garis besar adalah sebagai berikut:

- Aljabar Retorik (Rhetorical algebra), yang dikembangkan oleh bangsa Babilonia dan masih mendominasi sampai dengan abad ke-16;

- Aljabar yang dikontruksi secara Geometri, yang dikembangkan oleh Matematikawan Vedic India dan Yunani Kuno;

- Syncopated algebra, yang dikembangkan oleh Diophantus dan dalam ‘the Bakhshali Manuscript’; dan

- Aljabar simbolik (Symbolic algebra), yang titik puncaknya adalah pada karya Leibniz.

Klasifikasi dari Aljabar

Aljabar secara garis besar dapat dibagi dalam kategori berikut ini:

1. Aljabar Elementer, yang mempelajari sifat-sifat operasi pada bilangan riil direkam dalam simbol sebagai konstanta dan variabel, dan Aturan yang membangun ekspresi dan persamaan Matematika yang melibatkan simbol-simbol.(bidang ini juga mencakup materi yang biasanya diajarkan di sekolah menengah yaitu ‘Intermediate Algebra’ dan ‘college algebra’);

2. Aljabar Abstrak, kadang-kadang disebut Aljabar Modern, yang mempelajari Struktur Aljabar semacam Grup, Ring dan Medan (fields) yang didefinisikan dan diajarkan secara aksiomatis;

3. Aljabar Linier, yang mempelajari sifat-sifat khusus dari Ruang Vektor (termasuk Matriks);

4. Aljabar Universal, yang mempelajari sifat-sifat bersama dari semua Struktur aljabar.

5.Aljabar komputer, yang mengumpulkan manipulasi simbolis benda-benda matematis.

Dalam studi Aljabar lanjut, sistem aljabar aksiomatis semacam Grup, Ring, Medan dan Aljabar di atas sebuah Medan (algebras over a field) dipelajari bersama dengan telaah Struktur Geometri Natural yang kompatibel dengan Struktur Aljabar tersebut dalam bidang Topologi.

Aljabar Elementer

Aljabar Elementer adalah bentuk paling dasar dari Aljabar, yang diajarkan pada siswa yang belum mempunyai pengetahuan Matematika apapun selain daripada Aritmatika Dasar. Meskipun seperti dalam Aritmatika, di mana bilangan dan operasi Aritmatika (seperti +, −, ×, ÷) muncul juga dalam Aljabar, tetapi disini bilangan seringkali hanya dinotasikan dengan simbol (seperti a, x, y). Hal ini sangat penting sebab: Hal ini mengijinkan kita menurunkan rumus umum dari aturan Aritmatika (seperti a + b = b + a untuk semua a dan b), dan selanjutnya merupakan langkah pertama untuk penelusuran yang sistematik terhadap sifat-sifat sistem bilangan riil.

Dengan menggunakan simbol, alih-alih menggunakan bilangan secara langsung, mengijinkan kita untuk membangun persamaan matematika yang mengandung variabel yang tidak diketahui (sebagai contoh “Carilah bilangan x yang memenuhi persamaan 3x + 1 = 10″). Hal ini juga mengijinkan kita untuk membuat relasi fungsional dari rumus-rumus matematika tersebut (sebagai contoh “Jika anda menjual x tiket, dan kemudian anda mendapat untung 3x – 10 rupiah, dapat dituliskan sebagai f(x) = 3x – 10, dimana f adalah fungsi, dan x adalah bilangan dimana fungsi f bekerja.”).

Selain itu, banyak sekali manfaat dari aplikasi Matematika dalam kehidupan sehari-hari baik diterapkan dalam bidang ilmu lainnya maupun dalam kehidupan sehari-hari. Bahkan Ada pepatah mengatakan “Siapa yang menguasai matematika dan bahasa maka ia akan menguasai dunia”. Matematika sebagai media melatih untuk berpikir kritis, inovatif, kreatif, mandiri dan mampu menyelesaikan masalah sedangkan bahasa sebagai media menyampaikan ide-ide dan gagasan serta yang ada dalam pikiran manusia. Jelas sekali bahwa Matematika sangat berperan dalam kehidupan sehari-hari, kita tidak dapat menghindar dari Matematika sekalipun kita mengambil jurusan ilmu sosial tetap saja ada pelajaran Matematika di dalamnya karena mau tidak mau matematika digunakan dalam aktivitas sehari-hari. Salah satunya penerapan Aljabar dalam kehidupan sehari-hari.

Membahas mengenai manfaat Aljabar dalam kehidupan sehari-hari, mengingatkan kita yang mungkin sebagai guru atau orang tua saat ada pertanyaan yang terlontar dari anak dengan wajah polosnya. “Apa manfaat Aljabar dalam kehidupan kita sehari-hari?” Mereka belum tahu betapa pentingnya Aljabar yang merupakan dasar dari segala ilmu Matematika. Mungkin saat belajar Matematika di Sekolah Dasar kelas 1 atau 2 kita akan diberi soal seperti ini, “2 + Berapa? = 5”, bukankah itu serupa dengan “2 + x = 5, berapakah nilai x?” Setelah kita hitung maka akan menemukan jawabannya, yaitu 3. Selanjutnya, manfaat belajar Aljabar untuk kehidupan kita sehari-hari akan dikupas sebagai berikut.

wow.image

1. Aplikasi Aljabar bagi siswa

Tentu saja, manfaat aplikasi Aljabar bagi para pelajar adalah agar nilai ulangan Matematika tidak jatuh saat diberi soal Aljabar. Dan sebagai tambahan nilai untuk nilai kelulusan.

Selain itu, manfaat aplikasi Aljabar yang sering diterapkan siswa adalah untuk memanajemen uang saku yang diberikan orang tua tiap minggu. Contoh penerapan aljabar dalam hal ini sebagai berikut:

Misalnya, uang saku kita sebesar Rp 70.000,00 setiap minggu. Karena setiap hari Selasa dan Rabu ada pelajaran tambahan, serta hari Jumat ada kegiatan ekstra kurikuler pada pukul 14.20 WIB sedangkan setelah pulang sekolah kita tidak pulang dahulu (langsung lanjut belajar tambahan) maka dibutuhkan uang makan + uang jajan sebesar Rp 10.000,00. Nah, kita kebingungan menentukan uang saku setiap hari selain Selasa, Rabu, dan Jum’at selama satu minggu jika dalam satu minggu itu kita ingin menabung uang sebesar Rp 25.000,00. Dengan bantuan aljabar kita dapat menentukan uang saku kita per hari.

Cara mengerjakan menggunakan Aljabar:

Kita anggap uang saku kita per hari (selain Selasa, Rabu, dan Jumat karena sudah ada jatahnya, yaitu Rp 10.000,00) dengan x. Maka,

Rp 70.000 = (uang saku 1 minggu)

Rp 25.000 = (uang tabungan selama 1 minggu)

70.000 – 25.000 = (3 X 10.000) + 1(6x -3x)

Rp 45.000 = Rp 30.000 + 1(3x)

Rp 45.000 = Rp 30.000 + 3x

Rp 45.000 – Rp 30.000 = 3x

Rp 15.000 = 3x

x = Rp 15.000/3

x = Rp 5.000

{Mengapa (3 X 10.000)? 3 berasal dari Hari Selasa, Rabu, dan Jumat dalam satu Minggu. Berarti kan ada 3 hari}

{Mengapa 1(6x – 3x)? 1 berasal dari 1 minggu sedangkan 6x – 3x berasal dari 6 hari dalam satu Minggu kecuali Minggu karena libur, dikurangi 3 hari (Selasa, Rabu, dan Jumat karena telah dijatah)}

Jadi, uang saku per hari yang kita gunakan selain Selasa, Rabu, dan Jumat (sekali lagi karena telah dijatah) dan selain Minggu (karena libur) maksimal sebesar Rp 5.000,00. Tidak boleh lebih tetapi boleh kurang (hehe, sebagai tambahan tabungan). Boleh lebih tetapi harus konsekuen, yaitu mengurangi jatah uang saku di hari berikutnya. Intinya silakan diatur sendiri ya uang saku dari ortu, latihan jadi menteri keuangan untuk diri sendiri.

2. Aplikasi Aljabar bagi Ibu Rumah Tangga

Manfaat aplikasi Aljabar bagi Ibu Rumah Tangga adalah untuk memanajemen uang gaji, uang saku anak, uang sekolah anak, dll. Contoh memanajemen uang bagi Ibu Rumah Tangga adalah sebagai berikut:

Seorang Ibu setiap bulan mendapat gaji sebesar Rp 2.000.000,00. Ia diberi uang tambahan dari suaminya sebesar Rp 4.000.000,00 per bulan. Dibutuhkan Rp 1.000.000,00 untuk uang belanja per bulan. Uang kesehatan Rp 500.000,00 dan uang sekolah total dari ke-2 anaknya sebesar Rp 3.000.000,00. Sang Ibu bingung, berapa uang saku perorangan yang harus ia berikan untuk kedua anaknya tiap minggu tetapi uang per bulannya harus masih tersisa Rp 1.000.000,00 untuk ditabung. Jika Ibu itu pintar Aljabar maka Ibu itu dapat menentukan uang saku tersebut secara tepat, tapi jika tidak? Hemm… silakan dibayangkan sendiri sesuai imajinasi masing-masing ya…

Cara mengerjakan menggunakan Aljabar:

Kita anggap uang saku setiap anak per minggu sebagai x

(2.000.000 + 4.000.000) – 1.000.000 = 1.000.000 + 500.000 + 3.000.000 + (4 X 2x)

6.000.000 – 1.000.000 = 4.500.000 + (8x)

5.000.000 = 4.500.000 + 8x

5.000.000 – 4.500.000 = 8x

500.000 = 8x

x = 500.000/8

x = 62.500

{Mengapa (4 X 2x) karena 1 bulan = 4 minggu dan 2x itu adalah uang saku 2 orang anak}.

Jadi, uang saku setiap anak dalam waktu seminggu adalah Rp 62.500,00. Dengan matematika dan sistem Aljabar, cukup simple kan?

3. Aplikasi Aljabar bagi para Pedagang.

Aljabar dapat membantu pedagang untuk menghitung besar kecil keuntungan atau kerugian yang dapat diperolehnya, dan dapat menentukan besar modal yang dibutuhkan. Contoh penerapan Aljabar dalam kehidupan pedagang adalah sebagai berikut:

Seorang pedagang pempek membeli 5 kg ikan giling dengan harga Rp 60.000,00. Dengan 5 kg ikan giling tersebut dapat dibuat menjadi 10 buah pempek kapal selam. Pedagang itu ingin laba tiap pempek tersebut sebesar Rp 2.000,00. Maka berapa harga jualnya? Jika pedagang itu pandai Matematika, pasti akan mudah mengetahuinya, sebaliknya, jika tidak, apa yang akan terjadi? Bisa dibayangkan sendiri segala kemungkinan yang akan terjadi dalam angan masing-masing…

Cara mengerjakan menggunakan sistem Aljabar:

Kita anggap harga jual pempek itu sebagai x.

Maka diperoleh:

x = (60.000/10) + 2.000

x = 6.000 + 2.000

x = 8.000

Jadi, harga jual yang bisa diterapkan agar laba satu pempek Rp 2.000 adalah sebesar Rp 8.000,00. Dengan Matematika dan aplikasi Aljabar, sangat simple kan?

Selamat belajar dan lebih mengakrabkan diri dengan Matematika. Make Mathematics part of our life. Karena Matematika adalah bagian sangat dekat yang tak terpisahkan dari kehidupan kita, salah satunya melalui pengaplikasian Aljabar dalam kehidupan sehari-hari.

Tinggalkan komentar

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s